常用的设计方法有哪些

时间:2024-07-12 19:40:15
常用的设计方法有哪些

常用的设计方法有哪些

常用的设计方法有哪些,每一种算法设计方法都有自己的优点,使用也不同的场合,因此在学习的时候还是需要全部都融会贯通,下面小编带大家简单了解一下常用的设计方法有哪些。

  常用的设计方法有哪些1

一、迭代法

迭代法是用于求方程或方程组近似根的一种常用的算法设计方法。

二、穷举搜索法

穷举搜索法是对可能是解的众多候选解按某种顺序进行逐一枚举和检验,并从众找出那些符合要求的候选解作为问题的解。

三、递推法

递推法是利用问题本身所具有的一种递推关系求问题解的一种方法。

四、递归

采用递归描述的算法通常有这样的特征:为求解规模为N的问题,设法将它分解成规模较小的问题,然后从这些小问题的解方便地构造出大问题的解,并且这些规模较小的问题也能采用同样的分解和综合方法,分解成规模更小的问题,并从这些更小问题的解构造出规模较大问题的解。特别地,当规模N=1时,能直接得解。

五、回溯法

回溯法也称为试探法,该方法首先暂时放弃关于问题规模大小的限制,并将问题的候选解按某种顺序逐一枚举和检验。

回溯法的实质是在包含问题的所有解的解空间树中,按照深度优先的策略,从根节点出发搜索解空间树。若进入某子节点的子树后没有找到解(或者需要找出全部解),则需要从子节点回退(回溯)至父节点,从而可以选择其他子节点进行搜索。回溯法有“通用的解题法”之称,用它可以系统地搜索一个问题的所有解或任一解。

六、贪婪法

贪婪法是一种不追求最优解,只希望得到较为满意解的方法。贪婪法一般可以快速得到满意的解,因为它省去了为找最优解要穷尽所有可能而必须耗费的大量时间。贪婪法常以当前情况为基础作最优选择,而不考虑各种可能的整体情况,所以贪婪法不要回溯。

七、分治法

1、分治法的基本思想

任何一个可以用计算机求解的问题所需的计算时间都与其规模N有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

如果规模为n的问题可分解成k个子问题,1<k≤n,这些子问题互相独立且与原问题相同。

如:

斐波那契(Fibonacci)数列可以递归地定义为:

2、分治法的适用条件

分治法所能解决的问题一般具有以下几个特征:

(1)该问题的规模缩小到一定的程度就可以容易地解决;

(2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;

(3)利用该问题分解出的子问题的解可以合并为该问题的解;

(4)该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

3、分治法的基本步骤

分治法在每一层递归上都有三个步骤:

(1)分解:将原问题分解为若干个规模较小,相互独立,与原问题形式相同的子问题;

(2)解决:若子问题规模较小而容易被解决则直接解,否则递归地解各个子问题;

(3)合并:将各个子问题的解合并为原问题的解。

八、动态规划法

为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。

与分治法不同的是,适合于用动态规划法求解的问题,经分解得到的子问题往往不是独立的。若用分治法来解这类问题,则相同的子问题会被求解多次,以至于最后解决原问题需要耗费指数级时间。动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解,每个解都对应于一个值,我们希望找到具有最优值(最大值或最小值)的那个解。

  常用的设计方法有哪些2

一、【分治法】

在计算机科学中,分治法是一种很重要的算法。字面上的解释是“分而治之”,就是把一个复杂的问题分成两个或更多的相同或相似的子问题,再把子问题分成更小的子问题……直到最后子问题可以简单的直接求解,原问题的解即子问题的解的合并。这个技巧是很多高效算法的基础,如排序算法(快速排序,归并排序),傅立叶变换(快速傅立叶变换)……等。任何一个可以用计算机求解的问题所需的计算时间都与其规模有关。问题的规模越小,越容易直接求解,解题所需的计算时间也越少。例如,对于n个元素的排序问题,当n=1时,不需任何计算。n=2时,只要作一次比较即可排好序。n=3时只要作3次比较即可,…。而当n较大时,问题就不那么容易处理了。要想直接解决一个规模较大的问题,有时是相当困难的。

分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。

分治策略是:对于一个规模为n的问题,若该问题可以容易地解决(比如说规模n较小)则直接解决,否则将其分解为k个规模较小的子问题,这些子问题互相独立且与原问题形式相同,递归地解这些子问题,然后将各子问题的解合并得到原问题的解。这种算法设计策略叫做分治法。

如果原问题可分割成k(1<k≤n)个子问题, 且这些子问题都可解并可利用这些子问题的解求出原问题的解,那么这种分治法就是可行的。由分治法产生的子问题往往是原问题的较小模式,这就为使用"递归技术"提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解,这自然导致递归过程的产生。"分治"与"递归"像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。

分治法的复杂性分析

一个分治法将规模为n的问题分成k个规模为n/m的子问题去解。设分解阀值n0=1,且adhoc解规模为1的问题耗费1个单位时间。再设将原问题分解为k个子问题以及用merge将k个子问题的解合并为原问题的解需用f(n)个单位时间。用T(n)表示该分治法解规模为|P|=n的问题所需的计算时间,则有:

通过迭代法求得方程的解:

递归方程及其解只给出n等于m的方幂时T(n)的值,但是如果认为T(n)足够平滑,那么由n等于m的方幂时T(n)的值可以估计T(n)的增长速度。通常假定T(n)是单调上升的,从而当mi≤n<mi+1时,T(mi)≤T(n)<T(mi+1)。

二、【动态规划法】

最优化原理

1951年美国数学家 ……此处隐藏1437个字……术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。

1、回溯法的一般描述

可用回溯法求解的问题P,通常要能表达为:对于已知的由n元组(x1,x2,…,xn)组成的一个状态空间E={(x1,x2,…,xn)∣xi∈Si ,i=1,2,…,n},给定关于n元组中的一个分量的一个约束集D,要求E中满足D的全部约束条件的所有n元组。其中Si是分量xi的定义域,且 |Si| 有限,i=1,2,…,n。我们称E中满足D的全部约束条件的任一n元组为问题P的一个解。

解问题P的最朴素的方法就是枚举法,即对E中的所有n元组逐一地检测其是否满足D的全部约束,若满足,则为问题P的一个解。但显然,其计算量是相当大的。

我们发现,对于许多问题,所给定的约束集D具有完备性,即i元组(x1,x2,…,xi)满足D中仅涉及到x1,x2,…,xi的所有约束意味着j(jj。因此,对于约束集D具有完备性的问题P,一旦检测断定某个j元组(x1,x2,…,xj)违反D中仅涉及x1,x2,…,xj的一个约束,就可以肯定,以(x1,x2,…,xj)为前缀的任何n元组(x1,x2,…,xj,xj+1,…,xn)都不会是问题P的解,因而就不必去搜索它们、检测它们。回溯法正是针对这类问题,利用这类问题的上述性质而提出来的比枚举法效率更高的算法。

回溯法首先将问题P的n元组的状态空间E表示成一棵高为n的带权有序树T,把在E中求问题P的所有解转化为在T中搜索问题P的所有解。树T类似于检索树,它可以这样构造:设Si中的元素可排成xi(1) ,xi(2) ,…,xi(mi-1) ,|Si| =mi,i=1,2,…,n。从根开始,让T的第I层的每一个结点都有mi个儿子。这mi个儿子到它们的双亲的边,按从左到右的次序,分别带权xi+1(1) ,xi+1(2) ,…,xi+1(mi) ,i=0,1,2,…,n-1。照这种构造方式,E中的一个n元组(x1,x2,…,xn)对应于T中的一个叶子结点,T的根到这个叶子结点的路径上依次的n条边的权分别为x1,x2,…,xn,反之亦然。另外,对于任意的0≤i≤n-1,E中n元组(x1,x2,…,xn)的一个前缀I元组(x1,x2,…,xi)对应于T中的一个非叶子结点,T的根到这个非叶子结点的路径上依次的I条边的权分别为x1,x2,…,xi,反之亦然。特别,E中的任意一个n元组的空前缀(),对应于T的根。

因而,在E中寻找问题P的一个解等价于在T中搜索一个叶子结点,要求从T的根到该叶子结点的路径上依次的n条边相应带的n个权x1,x2,…,xn满足约束集D的全部约束。在T中搜索所要求的叶子结点,很自然的一种方式是从根出发,按深度优先的策略逐步深入,即依次搜索满足约束条件的前缀1元组(x1i)、前缀2元组(x1,x2)、…,前缀I元组(x1,x2,…,xi),…,直到i=n为止。

在回溯法中,上述引入的树被称为问题P的状态空间树;树T上任意一个结点被称为问题P的状态结点;树T上的任意一个叶子结点被称为问题P的一个解状态结点;树T上满足约束集D的全部约束的任意一个叶子结点被称为问题P的一个回答状态结点,它对应于问题P的一个解、

用回溯法解题的一般步骤:

(1)针对所给问题,定义问题的解空间;

(2)确定易于搜索的解空间结构;

(3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。

回溯法应用:

1、回溯法之数的划分

2、回溯法求解 运动员最佳配对问题

3、回溯法解决汽车加油次数最少问题

4、用回溯法找出n个自然数中取r个数的全排列

五、【分支限界法】

基本思想 :分支限界法常以广度优先或以最小耗费(最大效益)优先的方式搜索问题的解空间树。

在分支限界法中,每一个活结点只有一次机会成为扩展结点。活结点一旦成为扩展结点,就一次性产生其所有儿子结点。在这些儿子结点中,导致不可行解或导致非最优解的儿子结点被舍弃,其余儿子结点被加入活结点表中。 此后,从活结点表中取下一结点成为当前扩展结点,并重复上述结点扩展过程。这个过程一直持续到找到所需的解或活结点表为空时为止。

常见的两种分支限界法:

(1)队列式(FIFO)分支限界法

按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法

按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

分支限界法与回溯法的不同:

(1)求解目标:回溯法的求解目标是找出解空间树中满足约束条件的所有解,而分支限界法的求解目标则是找出满足约束条件的一个解,或是在满足约束条件的解中找出在某种意义下的最优解。

(2)搜索方式的不同:回溯法以深度优先的方式搜索解空间树,而分支限界法则以广度优先或以最小耗费优先的方式搜索解空间树。

解空间树的动态搜索

(1)回溯求解0/1背包问题,虽剪枝减少了搜索空间,但整个搜索按深度优先机械进行,是盲目搜索(不可预测本结点以下的结点进行的如何)。

(2)回溯求解TSP也是盲目的(虽有目标函数,也只有找到一个可行解后才有意义)

(3)分支限界法首先确定一个合理的限界函数,并根据限界函数确定目标函数的界[down, up];然后按照广度优先策略遍历问题的解空间树,在某一分支上,依次搜索该结点的所有孩子结点,分别估算这些孩子结点的目标函数的可能取值(对最小化问题,估算结点的down,对最大化问题,估算结点的up)。如果某孩子结点的目标函数值超出目标函数的界,则将其丢弃(从此结点生成的解不会比目前已得的更好),否则入待处理表。

分支限界法的设计思路

设求解最大化问题,解向量为X=(x1,…,xn),xi的取值范围为Si,|Si|=ri。在使用分支限界搜索问题的解空间树时,先根据限界函数估算目标函数的界[down, up],然后从根结点出发,扩展根结点的r1个孩子结点,从而构成分量x1的r1种可能的取值方式。

对这r1个孩子结点分别估算可能的目标函数bound(x1),其含义:以该结点为根的子树所有可能的取值不大于bound(x1),即:

bound(x1)≥bound(x1,x2)≥…≥ bound(x1,…,xn)

若某孩子结点的目标函数值超出目标函数的下界,则将该孩子结点丢弃;否则,将该孩子结点保存在待处理结点表PT中。

再取PT表中目标函数极大值结点作为扩展的根结点,重复上述。

直到一个叶子结点时的可行解X=(x1,…,xn),及目标函数值bound(x1,…,xn)。

分支限界法应用:

1、分支限界法之装载问题

2、分支限界法之布线问题

3、分支限界法之0 1背包问题

4、分支限界法之旅行售货员问题

《常用的设计方法有哪些.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式